Correzione algebra esercizi capitolo 4·6 "risoluzione di un'equazione..." pagina 215

Esercizio 1

- a) La forma normale generica di un'equazione di 1° grado è ax = b dove a rappresenta un numero, diverso da zero , chiamato coefficiente dell'incognita mentre b è un numero chiamato termine noto.
- b) Nell'equazione 15x = -6 il coefficiente dell'incognita è 15, il termine noto è -6.
- c) La soluzione dell'equazione 9x = 27 si ottiene dividendo per 9 quindi è x = 3.

Esercizio 2

$$6x = 3$$

$$5x - 4 = 0$$

$$7x - 2 = 3x$$

$$12x = -24$$

$$x = +3 + 2x$$

$$10 x = -5$$

$$-9x = -3$$

$$6x = 3$$
 $5x - 4 = 0$ $7x - 2 = 3x$ $12x = x = +3 + 2x$ $10x = -5$ $-9x = -3$ $-x = \frac{5}{4}$

Esercizio 3

sono corretti tutti gli esempi in cui al 1º membro (a sinistra del segno "=") c'è solo un monomio in x (per esempio: 3x; -2x; $\frac{1}{2}x$; $-\frac{3}{4}x$) e al 2° membro (a destra) c'è solo un temine noto (per esempio; 1; -1; 2; $-\frac{1}{4}$)

Esercizio 4

equazione	regola del trasporto e riduzione dei termini simili	forma normale	soluzione
7x - 9 + x = -2x + 1	7x + x + 2x = +9 + 1	10x = 10	$x = \frac{10}{10} = 1$
4x + 2x - 14 = -6x + 10	4x + 2x + 6x = +14 + 10	12x = 24	$x = \frac{24}{12} = 2$
x - 3x + 8 = x - 9x - 7	x - 3x - x + 9x = -8 - 7 *	6x = -15	$x = -\frac{15}{6} = -\frac{5}{2}$
-6x + 2x - 4 = -8x + 12	-6x + 2x + 8x = +4 + 12	4x = 16	$x = \frac{16}{4} = 4$
2x - 10 + 5x = -4 - 5x - 1	2x + 5x + 5x = +10 - 4 - 1	12x = 5	$x = \frac{5}{12}$

^{*} i due termini **x** a sinistra e destra erano uguali e <u>potevano essere eliminati direttamente</u> (vedi pag.210 "Caso particolare")

Esercizio 5

equazione	equazione equivalente a coefficienti interi	regola del trasporto e riduzione dei termini simili	forma normale	soluzione
$\frac{2}{3}x - 2 = \frac{1}{2} - \frac{5}{6}x$	4x - 12 = 3 + 5x	4x - 5x = 12 + 3	-x = 15	x = -15
$\frac{3}{4}x + \frac{1}{2} = -\frac{2}{3}x + 1$	9x + 6 = -8x + 12	9x + 8x = -6 + 12	17 x = -6	$x = -\frac{17}{6}$
$\frac{2}{5}x - \frac{3}{10} = \frac{1}{2} + x$	4x - 3 = 5 + 10x	4x - 10x = 3 + 5	-6x = 8	$x = -\frac{8}{6} = -\frac{4}{3}$
$\frac{x+3}{2} - \frac{2x}{3} = 1$	3(x+3)-4x=6	3x - 4x = 6 - 9	-x = -3	x = 3
$\frac{x-1}{12} + \frac{x-3}{6} = -\frac{1}{2}$	x-1+2(x-3)=-6	x + 2x = 1 + 6 - 6 **	3x = 1	$x = \frac{1}{3}$

^{**} i due termini **-6** a sinistra e destra erano uguali e <u>potevano essere eliminati direttamente</u> (vedi pag.210 "Caso particolare")